
sgsession Documentation
Release 0.1

Western X

October 05, 2015

Contents

1 Contents 2
1.1 Overview . 2
1.2 sgsession.Session . 4
1.3 sgsession.Entity . 7
1.4 sgsession.ShotgunPool . 8

Python Module Index 10

i

sgsession Documentation, Release 0.1

This Python package is a wrapper around shotgun_api3 for Shotgun which provides a local data cache and some
additional intelligence on top of bare entities.

This has been crafted to mimick the normal interface, and graft extra features on top. Howveer, this is not a drop-in
replacement for the normal API. While any individual entity in isolation should behave in the same way as with the
normal API, the entities are linked behind the scenes and so complex behaviour is likely to break.

Contents 1

https://github.com/shotgunsoftware/python-api
http://www.shotgunsoftware.com/

CHAPTER 1

Contents

1.1 Overview

1.1.1 Getting Started

All you must do to start using sgsession is to construct a Session with an existing Shotgun instance:

>>> from shotgun_api3 import Shotgun
>>> from sgsession import Session
>>> session = Session(Shotgun(*shotgun_args))

From then on you can use the session as you would have used the Shotgun instance itself.

1.1.2 The Entity

The primary representation of Shotgun entities is the Entity class, which extends the familiar dictionary with more
Shotgun specific methods and a link back to the session for fetching more fields, parents, etc..

1.1.3 Instance Sharing

The same Entity instance will always be returned for the same conceptual instance. E.g.:

>>> a = session.find_one('Task', [('code', 'is', 'AA_001')])
>>> b = session.find_one('Task', [('code', 'is', 'AA_001')])
>>> a is b
True

1.1.4 Caching, Merging, and Backrefs

Entities will be cached for the lifetime of their Session, and any new information about them will be merged in as
it is encountered.

For example, fields fetched in subsequent queries to the server will be availible on earlier found entities:

>>> a = session.find_one('Task', [('code', 'is', 'AA_001')])
>>> 'sg_status_list' in a
False
>>> b = session.find_one('Task', [('code', 'is', 'AA_001')], ['sg_status_list'])

2

https://github.com/shotgunsoftware/python-api

sgsession Documentation, Release 0.1

>>> a['sg_status_list']
'fin'

Deep-linked fields will also be merged into the main scope of the linked entities for easy referral:

>>> x = session.find_one('Task', [], ['entity.Shot.code'])
>>> x['entity']['code']
'AA_001'

Links to other entities will automatically populate backrefs on the remote side of the link, allowing for entities to easily
find there they have been linked from:

>>> task = session.find_one('Task', [], ['entity'])
>>> shot = task['entity']
>>> task in shot.backrefs[('Task', 'entity')]
True

1.1.5 Important Fields

Several fields will always be queried for whenever you operate on entities. These include Shot.code,
Task.step, and project on many types. When availible, deep-linked fields will also be fetched, including
Task.entity.Shot.code, so even single simple queries will return lots of related data:

>>> x = session.find_one('Task', [])
>>> x.pprint()
Task:456 at 0x101577a20; {

entity = Shot:234 at 0x101541a80; {
code = 'AA_001'
name = 'AA_001'
project = Project:123 at 0x101561f30; {

name = 'Demo Project'
}

}
project = Project:123 at 0x101561f30; ...
sg_status_list = 'fin'
step = Step:345 at 0x10155b5e0; {

code = 'Matchmove'
entity_type = 'Shot'
name = 'Matchmove'
short_name = 'Matchmove'

}
}

1.1.6 Brace Expansion

During a find or find_one, return fields can be specified with brace expansions to allow for a more compact
representation of complex links:

>>> session.find('Task', [], ['entity.{Asset,Shot}.{name,code}'])

1.1.7 Efficient Heirarchies

Ever have a list of tasks that you need to know the full heirarchy for all the way up to the project? With any number of
tasks, you can get all of the important fields for the full heirarchy in no more than 3 requests:

1.1. Overview 3

sgsession Documentation, Release 0.1

>>> tasks = session.find('Task', some_filters)
>>> all_entities = session.fetch_heirarchy(tasks)

all_entities is a list of every entity above those tasks, and every entity has been linked and backreffed to each
other.

1.2 sgsession.Session

The Session is a wrapper around a Shotgun instance, proxying requests to the server and applying additional logic
on top of it. The Session instance is designed to be used for a single task and then discarded, since it makes the
assumption that entity relationships do not change.

While not fully documented below, this object will proxy all attributes to the underlying Shotgun instance, so you can
treat this as you would a Shotgun instance.

class sgsession.session.Session(shotgun=None, schema=None, *args, **kwargs)
Shotgun wrapper.

Parameters shotgun – A Shotgun instance to wrap, or the name to be passed to
shotgun_api3_registry.connect() in order to construct one.

If passed a name, the remaining args and kwargs will also be passed to the api registry connector.

If passed a descendant of shotgun_api3.Shotgun (or one is constructed via the registry), it will be
wrapped in a ShotgunPool so that it becomes thread-safe. Any other objects (e.g. mock servers) are used
unmodified.

1.2.1 Entity Control

Session.merge(data, over=None, created_at=None, resolve=True)
Import data containing raw entities into the session.

This will effectively return a copy of any nested structure of lists, tuples, and dicts, while converting any dicts
which look like entities into an Entity . The returned structure is a copy of the original.

Parameters

• data (dict) – The raw fields to convert into an Entity .

• over (bool) – Control for merge behaviour with existing data. True results in the new data
taking precedence, and False the old data. The default of None will automatically decide
based on the updated_at field.

Returns The Entity . This will not be a new instance if the entity was already in the session, but
it will have all the newly merged data in it.

Session.get(*args, **kwargs)
Get one entity by type and ID.

Parameters

• type (str) – The entity type to lookup.

• id (int) – The entity ID to lookup. Accepts list or tuple of IDs, and returns the same.

• fetch (bool) – Request this entity from the server if not cached?

Session.filter_exists(*args, **kwargs)
Return the subset of given entities which exist (non-retired).

1.2. sgsession.Session 4

http://docs.python.org/release/2.6.8/library/stdtypes.html#dict
http://docs.python.org/release/2.6.8/library/functions.html#bool
http://docs.python.org/release/2.6.8/library/functions.html#str
http://docs.python.org/release/2.6.8/library/functions.html#int
http://docs.python.org/release/2.6.8/library/functions.html#bool

sgsession Documentation, Release 0.1

Parameters

• entities (list) – An iterable of entities to check.

• check (bool) – Should the server be consulted if we don’t already know?

• force (bool) – Should we always check the server?

Returns set The entities which exist, or aren’t sure about.

This will handle multiple entity-types in multiple requests.

1.2.2 Fetching Fields

Session.fetch(*args, **kwargs)
Fetch the named fields on the given entities.

Parameters

• to_fetch (list) – Entities to fetch fields for.

• fields (list) – The names of fields to fetch on those entities.

• force (bool) – Perform a request even if we already have this data?

This will safely handle multiple entitiy types at the same time, and by default will only make requests of the
server if some of the data does not already exist.

Note: This does not assert that all “important” fields exist. See fetch_core().

Session.fetch_core(*args, **kwargs)
Assert all “important” fields exist, and fetch them if they do not.

Parameters to_fetch (list) – The entities to get the core fields on.

This will populate all important fields, and important fields on linked entities.

Session.fetch_backrefs(*args, **kwargs)
Fetch requested backrefs on the given entities.

Parameters

• to_fetch (list) – Entities to get backrefs on.

• backref_type (str) – The entity type to look for backrefs on.

• field (str) – The name of the field to look for backrefs in.

Find all tasks which refer to this shot.
>>> session.fetch_backrefs([shot], 'Task', 'entity')

Session.fetch_heirarchy(*args, **kwargs)
Populate the parents as far up as we can go, and return all involved.

With (new-ish) arbitrarily-deep-links on Shotgun, this method could be made quite a bit more effiecient, since
it should be able to request the entire heirarchy for any given type at once.

See parent_fields.

1.2. sgsession.Session 5

http://docs.python.org/release/2.6.8/library/functions.html#list
http://docs.python.org/release/2.6.8/library/functions.html#bool
http://docs.python.org/release/2.6.8/library/functions.html#bool
http://docs.python.org/release/2.6.8/library/functions.html#list
http://docs.python.org/release/2.6.8/library/functions.html#list
http://docs.python.org/release/2.6.8/library/functions.html#bool
http://docs.python.org/release/2.6.8/library/functions.html#list
http://docs.python.org/release/2.6.8/library/functions.html#list
http://docs.python.org/release/2.6.8/library/functions.html#str
http://docs.python.org/release/2.6.8/library/functions.html#str

sgsession Documentation, Release 0.1

1.2.3 Importance Controls

These class attributes control which fields are considered “important”, which types are potentially linked to by various
fields, and which types are considered the parent of other types.

Session.important_fields_for_all = [’updated_at’]

Session.important_fields = {‘Project’: [’name’], ‘Step’: [’code’, ‘short_name’, ‘entity_type’], ‘Task’: [’step’, ‘content’], ‘Shot’: [’code’], ‘Asset’: [’code’, ‘sg_asset_type’], ‘Sequence’: [’code’], ‘Version’: [’code’, ‘sg_task’], ‘HumanUser’: [’firstname’, ‘lastname’, ‘email’, ‘login’], ‘PublishEvent’: [’code’, ‘sg_type’, ‘sg_version’]}

Session.important_links = {‘PublishEvent’: {‘project’: [’Project’], ‘sg_link’: [’Task’]}, ‘Task’: {‘project’: [’Project’], ‘step’: [’Step’], ‘entity’: [’Asset’, ‘Shot’]}, ‘Shot’: {‘project’: [’Project’], ‘sg_sequence’: [’Sequence’]}, ‘Asset’: {‘project’: [’Project’]}, ‘Sequence’: {‘project’: [’Project’]}}

Session.parent_fields = {‘Task’: ‘entity’, ‘Shot’: ‘sg_sequence’, ‘Sequence’: ‘project’, ‘Project’: None, ‘Version’: ‘entity’, ‘Asset’: ‘project’, ‘PublishEvent’: ‘sg_link’}

1.2.4 Wrapped Methods

Session.create(*args, **kwargs)
Create an entity of the given type and data.

Returns The new Entity .

See the Shotgun docs for more.

Session.find(*args, **kwargs)
Find entities.

Returns list of found Entity .

See the Shotgun docs for more.

Session.find_one(*args, **kwargs)
Find one entity.

Returns Entity or None.

See the Shotgun docs for more.

Session.update(*args, **kwargs)
Update the given entity with the given fields.

Todo
Add this to the Entity.

See the Shotgun docs for more.

Session.delete(*args, **kwargs)
Delete one entity.

Warning: This session will not forget about the deleted entity, and all links from other entities will remain
intact.

See the Shotgun docs for more.

Session.batch(*args, **kwargs)
Perform a series of requests in a transaction.

See the Shotgun docs for more.

1.2. sgsession.Session 6

https://github.com/shotgunsoftware/python-api/wiki/Reference%3A-Methods#wiki-create
https://github.com/shotgunsoftware/python-api/wiki/Reference%3A-Methods#wiki-find
https://github.com/shotgunsoftware/python-api/wiki/Reference%3A-Methods#wiki-find_one
https://github.com/shotgunsoftware/python-api/wiki/Reference%3A-Methods#wiki-update
https://github.com/shotgunsoftware/python-api/wiki/Reference%3A-Methods#wiki-delete
https://github.com/shotgunsoftware/python-api/wiki/Reference%3A-Methods#wiki-batch

sgsession Documentation, Release 0.1

1.3 sgsession.Entity

class sgsession.entity.Entity(type_, id_, session)
A Shotgun entity.

This behaves much like the dict the Shotgun API normally returns does, but understands the links bettween
entities in its associated session.

1.3.1 Entity Management

Entity.minimal
The minimal representation of this entity; a dict with type and id.

Entity.as_dict()
Return the entity and all linked entities as pure dict.

The first reference to an entity will have all availible fields, and any subsequent ones will be the minimal
representation. This is the ideal format for serialization and remerging into a session.

Entity.pprint(backrefs=None, depth=0)
Print this entity, all links and optional backrefs.

Entity.exists(*args, **kwargs)
Determine if this entity still exists (non-retired) on the server.

Parameters

• check (bool) – Check against the server if we don’t already know.

• force (bool) – Always recheck with the server, even if we already know.

Returns bool True/False if it is known to exist or not, and None if we do not know.

See Session.filter_exists() for the bulk version.

1.3.2 Retrieving Data

Entity.get(*args, **kwargs)
Get field value(s) if they exist, otherwise a default.

Parameters

• fields – A str field name or collection of str field names.

• default – Default value to return when field does not exist.

If passed a single field name as a str, return the coresponding value. If passed field names as a list or tuple,
return a tuple of coresponding values.

Entity.fetch(*args, **kwargs)
Get field value(s), automatically fetching them from the server.

Parameters

• fields – A str field name or collection of str field names.

• default – Default value to return when field does not exist.

• force (bool) – Force an update from the server, otherwise only query they server if fields
have been requested that we do not already have.

1.3. sgsession.Entity 7

http://docs.python.org/release/2.6.8/library/stdtypes.html#dict
http://docs.python.org/release/2.6.8/library/stdtypes.html#dict
http://docs.python.org/release/2.6.8/library/stdtypes.html#dict
http://docs.python.org/release/2.6.8/library/functions.html#bool
http://docs.python.org/release/2.6.8/library/functions.html#bool
http://docs.python.org/release/2.6.8/library/functions.html#bool

sgsession Documentation, Release 0.1

If passed a single field name as a str, return the coresponding value. If passed field names as a list or tuple,
return a tuple of coresponding values.

See Session.fetch() for the bulk version.

Entity.fetch_core(*args, **kwargs)
Assert that all “important” fields exist on this Entity.

See Session.fetch_core() for the bulk version.

Entity.fetch_backrefs(*args, **kwargs)
Fetch all backrefs to this Entity from the given type and field.

See Session.fetch_backrefs() for the bulk version.

Entity.fetch_heirarchy(*args, **kwargs)
Fetch the full upward heirarchy (toward the Project) from the server.

See Session.fetch_heirarchy() for the bulk version.

1.3.3 Heirarchy

Entity.parent(*args, **kwargs)
Get the parent of this Entity, automatically fetching from the server.

Entity.project(*args, **kwargs)
Get the project of this Entity, automatically fetching from the server.

Depending on what part of the heirarchy is already loaded, many more entities will have their Project fetched
by this single call.

1.4 sgsession.ShotgunPool

A wrapper around shotgun_api3 to allow for parallel requests.

The standard Shotgun API uses a connection object that serialized requests. Therefore, efficient usage in a multi-
threaded environment is tricker than it could be. Ergo, this module was concieved.

ShotgunPool is a connection pool that creates fresh Shotgun instances when needed, and recycles old ones after
use. It proxies attributes and methods to the managed instances. An actual Shotgun instance should never leak out of
this object, so even passing around bound methods from this object should be safe.

E.g.:

>>> # Construct and wrap a Shotgun instance.
>>> shotgun = Shotgun(...)
>>> shotgun = ShotgunPool(shotgun)
>>>
>>> # Use it like normal, except in parallel.
>>> shotgun.find('Task', ...)

class sgsession.pool.ShotgunPool(prototype, *args, **kwargs)
Shotgun connection pool.

Parameters prototype – Shotgun instance to use as a prototype, OR the base_url to be used
to construct a prototype.

If passed a base_url, the remaining args and kwargs will be passed to the Shotgun constructor for creation of
a prototype.

1.4. sgsession.ShotgunPool 8

sgsession Documentation, Release 0.1

The config object of the prototype will be shared amoung all Shotgun instances created; changing the settings
on one Shotgun instance (or this object) will affect all other instances.

1.4. sgsession.ShotgunPool 9

Python Module Index

s
sgsession.entity, 7
sgsession.pool, 8
sgsession.session, 4

10

Index

A
as_dict() (sgsession.entity.Entity method), 7

B
batch() (sgsession.session.Session method), 6

C
create() (sgsession.session.Session method), 6

D
delete() (sgsession.session.Session method), 6

E
Entity (class in sgsession.entity), 7
exists() (sgsession.entity.Entity method), 7

F
fetch() (sgsession.entity.Entity method), 7
fetch() (sgsession.session.Session method), 5
fetch_backrefs() (sgsession.entity.Entity method), 8
fetch_backrefs() (sgsession.session.Session method), 5
fetch_core() (sgsession.entity.Entity method), 8
fetch_core() (sgsession.session.Session method), 5
fetch_heirarchy() (sgsession.entity.Entity method), 8
fetch_heirarchy() (sgsession.session.Session method), 5
filter_exists() (sgsession.session.Session method), 4
find() (sgsession.session.Session method), 6
find_one() (sgsession.session.Session method), 6

G
get() (sgsession.entity.Entity method), 7
get() (sgsession.session.Session method), 4

I
important_fields (sgsession.session.Session attribute), 6
important_fields_for_all (sgsession.session.Session at-

tribute), 6
important_links (sgsession.session.Session attribute), 6

M
merge() (sgsession.session.Session method), 4
minimal (sgsession.entity.Entity attribute), 7

P
parent() (sgsession.entity.Entity method), 8
parent_fields (sgsession.session.Session attribute), 6
pprint() (sgsession.entity.Entity method), 7
project() (sgsession.entity.Entity method), 8

S
Session (class in sgsession.session), 4
sgsession.entity (module), 7
sgsession.pool (module), 8
sgsession.session (module), 4
ShotgunPool (class in sgsession.pool), 8

U
update() (sgsession.session.Session method), 6

11

	Contents
	Overview
	sgsession.Session
	sgsession.Entity
	sgsession.ShotgunPool

	Python Module Index

